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ABSTRACT

Time-evolving magnetohydrodynamic (MHD) coronal modeling, driven by a series of time-dependent
photospheric magnetograms, represents a new generation of coronal simulations. This approach offers
greater realism compared to traditional coronal models constrained by a static magnetogram. However,
its practical application is seriously limited by low computational efficiency and poor numerical stability.
Therefore, we propose an extended magnetic field decomposition strategy and implement it in the implicit
MHD model to develop a coronal model that is both efficient and numerically stable enough for simulating
the long-term evolutions of the global corona. The traditional decomposition strategies split the magnetic
field into a time-invariant potential field and a time-dependent component B1. It works well for quasi-
steady-state coronal simulations where |B1| is typically small. However, as the inner-boundary magnetic
field evolves, |B1| can grow significantly larger and its discretization errors often lead to nonphysical nega-
tive thermal pressure, ultimately causing the code to crash. In this paper, we mitigate such undesired situ-
ations by introducing a temporally piecewise-constant variable to accommodate part of the non-potential
field and remain |B1| consistently small throughout the simulations. We incorporate this novel magnetic
field decomposition strategy into our implicit MHD coronal model and apply it to simulate the evolution of
coronal structures within 0.1 AU over two solar-maximum Carrington rotations. The results show that this
coronal model effectively captures observations and performs more than 80 times faster than real time using
only 192 CPU cores, making it well-suited for practical applications in simulating the time-evolving corona.
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1. INTRODUCTION

Space weather refers to the variable physical conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and
thermosphere of the Earth, with coronal mass ejections (CMEs), large-scale releases of magnetized plasma structures from
the corona into the heliosphere, being one of the primary drivers. Space weather can impact the performance and reliability
of both space-borne and ground-based technological systems and pose risks to human health. For instance, the 1989 Quebec
blackout was triggered by a geomagnetic storm caused by a CME. The 2003 “Halloween Storm" damaged satellite electronics
due to increased radiation from CMEs. Also, during CME events, the increased radiation exposure raises astronauts’ cancer
risk. The total economic loss from a single superstorm has been estimated at up to 2.7 $ trillion (?) and the 2019 National
Threat and Hazard Identification and Risk Assessment (THIRA) report identified space weather and pandemics as a potential
global threat that could disrupt critical infrastructure, including satellite communications, power grids, and other essential
systems that society heavily relies on.

To enable timely action in mitigating damage from severe space weather, advanced Sun-to-Earth model chains
should be developed (e.g. Feng, Xiang, and Zhong 2013; Goodrich et al. 2004; Hayashi et al. 2021; Odstrcil et al. 2004;
Pomoell and Poedts 2018; Poedts, S. et al. 2020; Tóth et al. 2012) to understand space weather mechanisms and provide re-
liable forecasts hours to days in advance (e.g. Baker 1998; Feng, Xiang, and Zhong 2011, 2013; Feng 2020c; Koskinen et al.

2017). In the Sun-to-Earth modeling chain, observed photospheric magnetic fields serve as input for the solar corona model,
which in turn provides inner boundary conditions for the inner heliospheric model. The inner heliospheric model then sup-
plies boundary information to the geomagnetic model. The coronal model is essential for initializing other models and plays
a key role in accurately simulating solar disturbances such as CMEs (Brchnelova et al. 2022; Perri et al. 2023; Kuźma et al.

2023). However, physics-based MHD corona models are also the most complex and computationally intensive component
Wang et al. (2024, 2025) and sometimes encounter low-β (the ratio of the thermal pressure to the magnetic pressure) prob-
lems, where β can drop as low as 10−4 near the solar surface (Bourdin 2017), leading to severe stability and efficiency chal-
lenges (Feng et al. 2021; Wang et al. 2022a).

In most MHD coronal simulations, time steps are limited to a few seconds due to the restriction of the Courant-Friedrichs-
Lewy (CFL) stability condition. Consequently, depending on the mesh resolution, even state-of-the-art quasi-steady-state
coronal simulations require 10∼ 100 k CPU-hours to reach a quasi-steady state (Feng et al. 2019; Réville et al. 2020). In
contrast, for most MHD inner heliospheric models, the CFL-limited time steps are typically on the order of 10 minutes
(Detman et al. 2006; Hayashi 2012). As a result, coronal models demand significantly greater computational resources to
remain synchronized with inner heliospheric models. Although empirical solar corona models (Arge et al. 2003; Yang et al.

2018) offer higher efficiency, they discard important information and fail to deliver the necessary accuracy in forecasts
(Samara et al. 2021). Therefore, further efforts are needed to develop more efficient and accurate MHD coronal models. Im-
plicit temporal discretization strategies can help overcome the limitations imposed by the CFL condition, thereby enhancing
computational efficiency by allowing for larger time steps.

Recently, several successful attempts have been made to increase the efficiency of MHD coronal models by using implicit
solvers (Brchnelova et al. 2023b; Feng et al. 2021; Kuźma et al. 2023; Liu et al. 2023; Perri et al. 2018, 2022, 2023; Wang et al.

2019b; Wang, Feng, and Xiang 2019a; Wang et al. 2022a,b, 2024). In the implicit algorithm, convergence rate are improved
by selecting a considerable time step. Although this approach may come with a loss in temporal accuracy, modeling the
evolution and propagation of flux ropes has demonstrated that the implicit solar coronal model can maintain time accu-
racy while still outperforming the explicit MHD model in speed by selecting an appropriate time step size (Guo et al. 2023;
Linan et al. 2023). Furthermore, Wang et al. (2024) employed the pseudo-time marching method to ensure temporal accu-
racy for CME simulations in the coronal region. While these models have achieved the desired speedup, they remain con-
strained by a time-invariant magnetogram, which contrasts with the reality that the solar coronal structure evolves over time
(Owens, Lockwood, and Riley 2017). This discrepancy leads to differences between simulation results and coronal observa-
tions (Cash et al. 2015; Réville et al. 2020).
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To address the limitations of commonly used quasi-steady-state coronal models, which do not account for the evolution
of coronal structures, many researchers have focused on developing time-evolving coronal models. These models, typically
driven by hundreds of time-varying observed photospheric magnetograms, capture the evolution of coronal structures with
higher fidelity (Feng et al. 2023; Yang et al. 2012; Yeates et al. 2018). They may also enhance the realism of solar wind and CME
modeling (Lionello et al. 2023). However, it is too computationally expensive to perform time-evolving MHD coronal simu-
lations (Yeates et al. 2018). One of the main reasons is that most state-of-the-art time-evolving coronal models (Hayashi et al.

2021; Hoeksema et al. 2020; Linker et al. 2024; Lionello et al. 2023; Mason et al. 2023; Yang et al. 2012) still rely on explicit or
semi-implicit approaches, where only certain source terms are treated implicitly while the time step remains constrained by
the explicitly treated terms, leading to extremely low efficiency. As a result, real-time explicit or semi-implicit MHD coronal
simulations typically require thousands of compute cores. For a more detailed description of time-evolving coronal models,
see Wang et al. (2025).

Furthermore, Wang et al. (2025) extended the quasi-steady-state COolfluid COroNal UnsTructured (COCONUT), a novel
implicit MHD solar corona model based on the Computational Object-Oriented Libraries for Fluid Dynamics (COOLFluiD)1,
into a time-evolving coronal model. It is the first fully implicit time-evolving MHD coronal model, allowing the use of large
time-step sizes exceeding the CFL condition. It can simulate the evolution of a full CR period in just 9 hours of computational
time (with a time-step length of 10 minutes, 1,080 CPU cores, and approximately 1.5 million cells). However, it currently
struggles with resolving low-β issues. Given that (B+ǫ B)2 − B2 ≡ 2 ǫ B2 + ǫ2 B2, where ǫ B represent the magnetic field
discretisation error, the magnetic pressure discretisation error can be comparable to thermal pressure in low-β regions. This
can lead to the emergence of non-physical negative thermal pressure when deriving thermal pressure from energy density.
Reducing magnetic field discretization errors is crucial to mitigating these issues.

By solving decomposed MHD equations, where the magnetic field B is split into a time-independent potential magnetic
field B0 and a time-dependent field B1 (e.g. Fuchs et al. 2010; Guo 2015; Powell et al. 1999; Tanaka 1995), researchers (e.g.
Feng et al. 2010, 2021; Li et al. 2018; Wang, Feng, and Xiang 2019a; Wang et al. 2022a,b, 2024) have reduced magnetic field dis-
cretization errors and significantly improved the numerical stability of quasi-steady-state MHD coronal modeling. However,
as |B1| increases in the time-evolving coronal simulations, discretization errors in B1 are still likely to result in non-physical
negative thermal pressure and cause the code to break down. Therefore, Griton (2018) incorporated the rotation of the poten-
tial magnetic field B0 in simulations of planetary magnetospheres, treating B0 as a time-dependent field that co-rotates with
the planet. This approach helps keep |B1| small and improves the numerical stability of the MHD planetary magnetosphere
code. Given that time-evolving coronal simulations involve not only differential rotation but also magnetic flux emergence
and cancellation, we further introduce a temporally piecewise-constant variable in this paper to accommodate part of the
non-potential field, ensuring that |B1| remains consistently small throughout the simulations of the time-evolving corona.

Based on the above considerations, the paper is organized as follows. In Section 2 and Appendix A, we introduce the nu-
merical formulation and implementations of the time-evolving MHD coronal model. The governing equations, the deriva-
tion of the extended magnetic field decomposition strategy, the processing of time-evolving boundary conditions, and the
positivity-preserving (PP) measures applied to enhance the model’s numerical stability are described in detail. In Section 3,
we present the simulation results, including the evolution of the corona during CRs 2110 and 2111, as well as a comparison
between the time-evolving simulation results and observational data. Finally, in Section 4, we summarize the key features of
the efficient and numerically stable fully implicit time-evolving coronal model and offer concluding remarks.

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

2.1. The governing equations

This time-evolving MHD global coronal model is based on the time-accurate Solar Interplanetary Phenomena Implicit
Finite Volume Method (SIP-IFVM) coronal model (Wang et al. 2024). Additionally, we incorporate the optically thin radiative
loss and adjust the adiabatic index γ from 1.05 to 5

3 to better represent the adiabatic process. Furthermore, we develop an

1 https://github.com/andrealani/COOLFluiD.git

https://github.com/andrealani/COOLFluiD.git
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extended magnetic field decomposition strategy, the derivation of which is available in Appendix A, and employ it to enhance
numerical stability of the time-evolving thermodynamic MHD coronal model. The governing equation is written as bellow



















































∂ρ
∂t

+∇· (ρv) = 0
∂(ρv)
∂t +∇·

[

ρv v+
(

p + B2

2 − B2
00
2

)

I−BB+B00 B00

]

=−∇· (B1 +B01)B− ρG Ms

r 3 r+Sm

∂E1
∂t

+∇·
[(

E1 +pT 1 +B1 ·B0
)

v−B(v ·B1)
]

=−∇· (B1 +B01) (v ·B1)− (v ·∇)B0 ·B+ (B ·∇)B0 ·v−ρv ·r
G Ms

r 3 +SE

∂B1
∂t

+∇· (v B−Bv) =−∇· (B1 +B01)v

(1)

In Eq. (1), B =
(

Bx ,By ,Bz

)T
and v = (u, v, w)T denote the magnetic field and velocity in Cartesian coordinate system, ρ

is the plasma density, B00 =
(

B00x ,B00y ,B00z

)T
is a static potential field, B01 =

(

B01x ,B01y ,B01z

)T
is a temporally piecewise

constant field and B0 = B00 + B01, B1 = B − B0, E1 = p
γ−1 + 1

2ρv2 + 1
2 B2

1 with the adiabatic index γ = 5
3 , and pT 1 = p + B2

1
2 .

During the simulations, as detailed in in Appendix A, when p

0.5B2
1

falls below a specific threshold, we update B01, B1 and E1

to B01 +B1, 0 and
p

γ−1 + 1
2ρv2, respectively. In the definition of the magnetic field, a factor of 1p

µ0
is absorbed with µ0 =

4×10−7π H m−1 denoting the magnetic permeability. Additionally, G means the universal gravitational constant, Ms means
the mass of the Sun, and G Ms = 1.327927×1020 m3 s−2. The thermal pressure of the plasma is defined as p =ℜρT , where
ℜ = 1.653×104m2s−2K−1 denotes the gas constant, and T is the temperature of the bulk plasma. Besides, r is the position
vector and r = |r| refers to the heliocentric distance. SE =Qe+v·Sm+∇·q+Qr ad is the energy source term with the volumetric
heating function Qe and Sm being used to mimic the effect of coronal heating and solar wind acceleration, Qr ad and ∇·q being
used to mimic the radiation loss and thermal conduction.

By assuming the radiative losses to be optically thin (Rosner, Tucker, and Vaiana 1978; Zhou et al. 2021), the radiative term
Qr ad is defined as below,

Qr ad =−ne npΛ(T ) . (2)

where the proton number density np is assumed to be equal to the electric number density ne for the hydrogen plasma.
Similar to Wang et al. (2024); van der Holst et al. (2014), the radiative cooling curve function Λ(T ) in this paper is derived from
version 10 of CHIANTI (Dere et al. 1997, 2023), an atomic database for emission lines. As did in Xia et al. (2011); Wang et al.

(2024), we set Λ(T ) to zero when T < 2×104 K, which means the plasma has become optically thick and is no longer fully
ionized. The heat flux q is defined in a Spitzer form or collisionless form mainly according to the radial distance (Hollweg
1978):

q=
{

ξT 5/2(b̂ ·∇T )b̂, if 1 ≤ r ≤ 10Rs

−αne kB T v, if r > 10Rs

(3)

where b̂ = B
|B| , ξ = 9 × 10−12Jm−1 s−1 K− 7

2 (Endeve, Leer, and Holzer 2003; Feng et al. 2010), the parameter α is set to 3
2

(Endeve, Leer, and Holzer 2003), ne is the electron number density, and kB = 1.380649×10−23 JK−1 is the Boltzmann constant.
The Spitzer form of heat flux is defined along the magnetic field, whereas the collisionless form is defined along the velocity
vector. To ensure a smooth transition between these two forms, we hybridize the Spitzer form qSpitzer and collisionless form
qCollisionless based on the Alfvénic Mach number within the domain r ≤ 10Rs :

q= min

(

1,
Va

|v|

)

qSpitzer +
(

1−min

(

1,
Va

|v|

))

qCollisionless, if 1 Rs ≤ r ≤ 10 Rs (4)

where Va = |B|
ρ0.5 is the Alfvénic velocity. Following the approach in Lionello, Linker, and Mikić (2008) and Mikić et al. (1999),

we apply a linear smoothing transition between Eq. (4) and qCollisionless over the domain of 7.5Rs ≤ r ≤ 10Rs . In our time-
evolving coronal simulation, we noticed that the plasma velocity can occasionally reach extraordinarily high values, exceed-
ing 1000 km s−1, in the vicinity of low-β regions. This phenomenon can be alleviated by enhancing the heat conduction
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term. Therefore, we enhance the heat conduction efficiency in low-β regions and ultimately adopt the following plasma
β-dependent heat flux q∗.

q∗ = q

(

1+ tanh

(

1

β
·

1

100

))

(5)

2.2. Spatial discretization

We adopt Godunov’s method to advance cell-averaged solutions in time by solving a Riemann problem at each cell interface
(Einfeldt et al. 1991; Godunov 1959). The computational domain is a spherical shell ranging from 1Rs to 20Rs . The six-
component composite mesh (Feng et al. 2010; Feng 2020b; Wang et al. 2022a, 2024) with each identical component being a

low-latitude spherical mesh confined by
(

π
4 −δθ ≤ θ ≤ 3π

4 +δθ
)

×
(

3φ
4 −δφ ≤φ≤ 5π

4 +δφ

)

and discretized to 96×42×42 grid

cells is adopted. Here δθ and δφ are adjustable parameters proportionally dependent on the grid spacing entailed for the
minimum overlapping area.

As usual, the following discretized integral equations are obtained by integrating Eq. (1) over the hexahedral cell i and
applying Gauss’s theorem to convert the volume integral of the flux divergence into a surface integral.

Vi
∂Ui

∂t
+Ri = 0, (6)

where Ri =
∮

∂Vi
F·ndΓ−Vi Si means the residual operator over cell i . Here

∮

∂Vi
F·ndΓ=

6
∑

j=1
Fi j (UL ,UR )·ni j Γi j , Si = SPowell,i +

Sgra,i +Sheat,i corresponds to the Godunov-Powell source terms, the gravitational force, and the heating and radiation loss
source terms in cell i , respectively. Ui denotes the cell-averaged solution variables in cell i . As described in Appendix A,
when min

∀celli

pi

0.5B2
1,i

drops below a threshold, in this paper we adopt 10, we update B01,i ,B1,i = 0 and E1,i to B01,i +B1,i , 0 and

pi

γ−1 +
1
2ρi v2

i
, respectively.

Additionally, in Eq. (6), Vi is the volume of cell i , Γi j is the area of interface shared by cell i and its neighbouring cell j , and
ni j is the unit normal vector of Γi j , pointing from cell i to cell j . Following the approach in Feng et al. (2021) and Wang et al.

(2022a), the cell-averaged Powell source term is calculated as:

SPowell,i =
1

Vi

6
∑

j=1

T−1
8i j Q (UnL)

(

B1nL +B01nL −B1n,i −B01n,i −η(B1nR +B01nR −B1nL −B01nL)
)

Γi j (7)

where η= SL

SR−SL
(Wu and Shu 2019), T8i j =













1 0 0 0

0 Ti j 0 0

0 0 1 0

0 0 0 Ti j













, and Ti j =
(

ni j ,t1i j ,t2i j

)T
is a rotation matrix that transforms the

(

x, y, z
)

coordinate system to the (n, t1, t2) coordinate system. Here, t1i j and t2i j are two unit orthogonal tangential vectors of
cell face Γi j (e.g., Feng 2020a, and references therein), SL and SR are the velocities of two fast waves as defined in Wang et al.

(2022a), and Q (UnL) =
(

0, −Ti j ·Bi ,L , −vi ,L ·B1i ,L , −Ti j ·vi ,L
)T

. The subscripts “i ", “L" and “R " denote the corresponding vari-
ables at the centroid of cell i , and on Γi j extrapolated from cell i and from cell j , respectively. Besides, Sgra,i , and Qr ad ,i

included in Sheat,i are defined by evaluating their respective formulations using the corresponding variables at the centroid
of cell i . The inviscid flux through the interface Γi j , described as Fi j (UL ,UR ) ·ni j , is computed using the positive-preserving
(PP) HLL Riemann solver (Feng et al. 2021), equipped with a self-adjustable dissipation term (Wang et al. 2025). The cell-
averaged heat conduction term

(

∇·q
)

i is calculated following the Gauss’s theorem, as described in Wang et al. (2022a). The
volume heating coefficients in Qe,i and Sm,i are precomputed from six-hourly updated magnetograms following the meth-
ods described in Feng et al. (2021); Wang et al. (2022a,b), and are stored as a time series and then linearly interpolated to the
current time step during the time-evolving coronal simulations.
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Following Wang et al. (2024), the second-order positivity-preserving reconstruction method is used to reconstruct the
piecewise polynomials of primitive variables {ρ,u, v, w, p,T } on the cell surface Γi j ,

Xi (x) = X |i +Ψi ∇X |i · (x−xi ) (8)

where X ∈ {ρ, u, v, w, p, T }, X |i is the corresponding variable at xi (the centroid of cell i ), ∇X |i =
(

∂X
∂x , ∂X

∂y , ∂X
∂z

)∣

∣

∣

i
is the deriva-

tive of X at xi , and Ψi is the limiter used to control spatial oscillation. Furthermore, a globally solenoidality-preserving (GSP)
approach (Feng et al. 2019, 2021) is employed to enhance the divergence-free constraint for the magnetic field. Considering
that reducing the magnetic field discretization error is crucial for enhancing the positivity-preserving (PP) property of MHD
models in low β regions (Wang et al. 2024), and given that the MHD decomposition method introduced in this paper has
improved the numerical stability of our code, we opt to abandon the limiter as follows in the calculation of the piecewise
polynomial representations for B00(x), B0(x) and B1(x) to minimize discretization error in the magnetic field.

Xi (x) = X |i + ∇X |i · (x−xi ) (9)

where X ∈ {B00x , B00y , B00z , B0x , B0y , B0z , B1x , B1y , B1z }.

2.3. Temporal integration

In this paper, we first apply the following backward Euler temporal integration to Eq. (6) to perform a quasi-steady state
coronal simulation constrained by one time-invariant magnetogram (Feng et al. 2021; Wang et al. 2022a).

Vi

∆Un
i

∆t
+Rn+1

i = 0. (10)

The superscripts ‘n′
and ‘n+1′ denote the time level, ∆Un

i
= Un+1

i
−Un

i
, is the solution increment between the n-th and (n+1)-th

time level, and ∆t = t n+1−t n is the time increment. Subsequently, we evolve the magnetograms to carry out the time-evolving
coronal simulation, enabling us to capture the temporal evolution of coronal structures. To improve the temporal accuracy
for time-evolving simulations, we further employ the pseudo-time marching method (Wang et al. 2024), which introduced a
pseudo time τ to Eq. (10) and updated the solution during each physical time step ∆t by solving a steady-state problem on τ,
to solve Eq. (10).

Vi
∆Ui

∆τ
+

(

Vi

∆Un
i

∆t
+Rn+1

i

)

= 0. (11)

Here, ∆τ is a pseudo time step and ∆Ui is the solution increment during ∆τ.
Similar to the PP measure employed in Wang et al. (2025), we make the following adjustment on the updated density and

thermal pressure during each pseudo-time iteration in domain of 1Rs ≤ r ≤ 2Rs .







ρi =Υρi

B2
i

V 2
A,max

+
(

1−Υρi

)

ρo,i

pi =Υpi

B2
i

2 βmin +
(

1−Υpi

)

po,i

, if 1Rs ≤ r ≤ 2Rs (12)

In Eq. (12), Υρi
= 0.5+0.5 · tanh

(

VA,i−VA,max

V f ac
·π

)

with VA,i = |Bi |
ρ0.5

o,i
, VA,max = 2 |Bmax |

ρ0.5
s

, and V f ac = VA,max

1000 . |Bmax | represents the

maximum magnetic field strength in the entire computational domain. Besides, Υpi
= 0.5+0.5 · tanh

(

βmin−
pi

0.5·B2
i
+ǫ

β f ac
·π

)

with

β f ac = 10−7, βmin = 10−4 and ǫ= 10−12 are adopted in this paper. Additionally, we constrain the plasma velocity in the range

of 1Rs ≤ r ≤ 1.1Rs not to exceed the speed of sound Cs,i =
(

γ·pi

ρi

)0.5
, as follows

vi = vo,i ·min

(

Cs,i
∣

∣vo,i

∣

∣

·
(

0.3+ tanh

(

r −Rs

Rs
·8.68

))

, 1.0

)

, if 1Rs ≤ r ≤ 1.1Rs . (13)
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Here, the subscript “o " on ρ, p and v denotes the density, thermal pressure and velocity updated during the pseudo-time
iterations without adjustment.

During the time-evolving coronal simulation, the time-step length is gradually increased from an explicit time step to
χ ·τ f low where χ is an adjustable parameter and τ f low is a reference time length that is the same as defined in Feng et al.

(2021) and Wang et al. (2022a). The time-step size can significantly affect the solution accuracy and computational efficiency
for time-evolving simulations. A smaller time-step size increases the number of time steps required, demanding more com-
putational resources. However, a particularly large time-step size can degrade temporal accuracy and may even result in
program crashes (Wang et al. 2024). To make the time-step length achieve the necessary temporal accuracy, numerical sta-
bility, and high computational efficiency for time-evolving coronal simulations, we initially set χ = 1. It performs well for
most of the time-evolving simulations.

Additionally, we noticed that during the long-term time-evolving simulations, a dramatic increase in the magnetograms,
where the maximum magnetic field strength increases by more than 1.5 times, may occur between two adjacent magne-
tograms, potentially causing the code to crash. In this paper, this phenomenon occurred in the magnetograms at the 882-nd
and 888-th hours of the approximately 1300-hour time-evolving simulation. Assuming such cases occur at a moment be-
tween tm−1 and tm , where the subscripts “m−1" and “m" correspond to the (m −1)-th and m-th magnetograms, we opt to
employ a second-order Runge-Kutta method, with the intermediate states U(1) and U(2) computed using the backward Euler
method (Feng et al. 2021; Wang et al. 2022a,b), to solve Eq. (6) over the time interval from tm−2 to tm+3.

U(1)
i

= Un
i −∆tR(1)

i

U(2)
i

= U(1)
i

−∆tR(2)
i

Un+1
i =

1

2

(

Un
i +U(2)

i

)

.

(14)

During this time interval, the inner-boundary magnetic fields between tm−2 and tm+1 are linearly interpolated from the
magnetograms at tm−2 and tm+1.

2.4. Implementation of inner-boundary conditions

In this paper, we first perform a quasi-steady-state coronal simulation constrained by a time-invariant magnetogram
(Wang et al. 2022a), and then evolve the magnetograms to drive the following time-evolving coronal simulation during CRs
2110 and 2111. Around this period, the time interval between two adjacent GONG-ADAPT magnetograms is 6 hour. And the
original GONG-ADAPT magnetograms adopted in this paper are positioned in the co-rotating Carrington heliographic coor-
dinate system. Therefore, we first rotated these magnetograms to the Heliocentric Inertial (HCI) coordinate system to match
the inertial coordinate system. Subsequently, cubic Hermite interpolation is applied to these input magnetograms to derive
the required inner-boundary magnetic fields for each time step during the time-evolving coronal simulations (Wang et al.

2025).
As did in Wang et al. (2024), the inner-boundary conditions are specified at the inner boundary face, which coincides with

the solar surface. Four Gaussian points are used on each inner-boundary face. The inner-boundary conditions at these
Gaussian points, together with the solutions in the boundary cell and its seventeen neighboring cells that share at least a
vertex with it, are utilized to construct the reconstruction formulation of primitive variables in the inner-boundary cells
(Feng et al. 2021; Wang et al. 2024). Take the i -th boundary cell, denoted as cell BD, i , which is a hexahedral cell consisting of
one curved boundary surface and five planar faces (Feng et al. 2021; Wang et al. 2022a), as an example:

XBD,i (x)= X |BD,i +ψBD,i (∇X )|BD,i ·
(

x−xBD,i
)

,

X ∈{ρ,u, v, w,B1 ,B00,B0, p,T },
(15)

The subscript “BD, i " refers to the variable corresponding to the i -th boundary cell cell BD, i .
As the inner-boundary magnetic field evolves, a tangential component of the electric field, EBD,t , emerges at the inner

boundary. According to the generalized Helmholtz theorem in classical electromagnetic theory, EBD,t can be described as
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follows:
EBD,t =∇t Φ+∇t × (Ψer ) . (16)

where the subscript “BD,t " refers to the variable corresponding to the tangential component of a vector variable at the inner-
boundary face. Here, Φ and Ψ are arbitrary functions of position on the solar surface, and ∇t represents the tangential
derivative operator. The first term in the right-hand side of Eq. (16) corresponds to the effects of the transverse magnetic field
BBD,t =

(

BBD,θ,BBD,φ
)

, such as the transverse currents, while the second term represents variations in the radial magnetic
field BBD,r . Since the GONG-ADAPT magnetograms do not provide the transverse magnetic field, we consider only the first
term in this study and defer the inclusion of the second term to future work. Combining this with Faraday’s law,

∂BBD,r

∂t
=−

(

∇ ×EBD,t
)

·er ,

we obtain the following equation:
∂BBD,r

∂t
=∇2

t Φ (17)

In this paper, Eq. (17) is solved on our six-component grid system using the 5-point method in a spherical coordinate.
Considering that EBD,t = −(vBD ×BBD )t , and given that only the radial component of the inner-boundary magnetic field
is available at the inner-boundary face (BBD,t = 0), we derive the following equations for the tangential velocity components
vBD,t =

(

vBD,θ, vBD,φ
)

:

vBD,θ =
EBD,φ

BBD,r
, vBD,φ =−

EBD,θ

BBD,r
(18)

where the subscripts “θ" and “φ" indicate the respective vector components along the θ and φ directions. Additionally, fol-
lowing Lionello et al. (2023), we apply the following adjustment to Eq. (18) to regularize the flow near the boundary polarity
inversion line, where BBD,r = 0:

vBC ,t =
(EBC ×BBC )t

B2
BC

+D |EBC | · |BBC |
/

Cs

(19)

This means that the magnitude of the tangential velocity will converge to Cs

D , where D = 3 is adopted in this paper and Cs is
the local sound speed calculated from the solution in the cell immediately adjacent to the inner-boundary cell in the radial
direction.

During the simulations, the boundary conditions for thermal pressure pBD , plasma density ρBD , temperature TBD , and
radial velocity vBD,r is classified into two cases based on the radial velocity vr in the cell immediately adjacent to the
inner-boundary cell in the radial direction (Groth et al. 2000; Feng et al. 2021; Wang et al. 2022a,b, 2024). When vr ≥ 0: The
thermal pressure and plasma density at the inner-boundary face are set as pBD = 1

γ and ρBD = 1 in code unit. Following
Brchnelova et al. (2023a); Wang et al. (2025), the inner-boundary density ρBD is further adjusted based on the local Alfvénic
velocity, as in Eq. (12), to enhance the positivity-preserving property of the coronal model. Additionally, the inner-boundary

temperature is calculated as TBD = γ·pBD

ρBD
, and the radial velocity is constrained as

∂vBD,r
∂r = 0. When vr ≤ 0:

∂ρBD

∂r = 0,
∂pBD

∂r = 0,
∂TBD

∂r
= 0 and vBD,r = 0 are applied.

Additionally, the variables at the centroid of inner-boundary cells are required in calculation of Eq. (15). In this paper, the
magnetic field is generated from the potential field (PF) solver with a 15-order spherical harmonic expansion. The tangential
velocity is computed as an average of the values at four Gaussian points and at the centroid of the neighboring cell imme-
diately adjacent to the inner-boundary cell in the radial direction. The radial velocity, thermal pressure, plasma density,
and temperature are derived using Parker’s one-dimensional hydrodynamic isothermal solar wind solution (Parker 1963).
Besides, the thermal pressure and plasma density are adjusted using Eq. (12).

3. NUMERICAL RESULTS

In this section, the time-evolving SIP-IFVM coronal model, equipped with the extended magnetic field decomposition
strategy, is employed to simulate the evolution of coronal structures during Carrington Rotations (CRs) 2110 and 2111. This
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period, spanning from May 9 to July 3, 2011, corresponds to the solar maximum of Solar Cycle 24. Approximately 220 GONG-
ADAPT magnetograms2 , with the first realization of the 12-member ensemble (Perri et al. 2023) adopted and updated at a
6-hour cadence, are used to drive these simulations in an inertial coordinate system spanning from the solar surface to 20
Rs . Fig. 1 displays the inner-boundary magnetic field at various moments. For convenience of comparatione, these magnetic
field distributions are illustrated in a co-rotating coordinate system. It reveals that the inner-boundary magnetic field varies
more significantly at low and middle latitudes, while the regions beyond 70◦ in both the north and south poles are predom-
inantly occupied by magnetic fields directed inward and outward from the Sun. Additionally, the magnetic field strength
approximately doubles during these two CRs. During the time-evolving simulations, the magnetic field near the solar surface
sometimes exceeds 40 Gauss with the plasma beta reaching a minimum value of around 10−3. The entire simulation consists
of 23040 time steps, with the average time step being approximately 3.4 minutes.

Figure 1. Distribution of the radial magnetic field used as the inner boundary condition at the solar surface, shown in a co-rotating coor-
dinate system.

All calculations in this paper are performed on the WICE cluster, part of the Tier-2 supercomputer infrastructure of the
Vlaams Supercomputer Centrum (VSC)3. By utilizing 192 CPU cores, the wall-clock time for the simulation of these two
solar-maximum CR periods is approximately 16 hours. The evolution of physical time along the computational time is il-
lustrated in Fig. 2. It demonstrates that the evolution of coronal structures over 1322 hours of physical time is completed
within just 16 hours of computational time, showcasing that our model operates over 80 times faster than real-time coronal
evolution using only 192 CPU cores. Additionally, the close-up view of the profile between 876 and 912 hours of physical
time, which is around the event of a dramatic increase in the magnetograms described in Subsection 2.3, is completed within
0.18 computational hours, demonstrating an efficiency approximately 1.5 times faster than during other periods. While this
strategy may miss some high-frequency phenomena during this period and reduce temporal accuracy, it effectively prevents
code crashes around the dramatic increase in the magnetograms.

In Subsection 3.1, we display the distribution of open- and closed-magnetic field regions and compare the simulated ex-
treme ultraviolet (EUV) images with observations. In Subsection 3.2, we present the simulated and observed white-light

2 https://gong.nso.edu/adapt/maps/gong/2011/
3 https://www.vscentrum.be/

https://gong.nso.edu/adapt/maps/gong/2011/
https://www.vscentrum.be/
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Figure 2. Evolution of physical time versus computational time in the time-evolving coronal simulation for CRs 2110 and 2111 (left) and a
close-up view of the profile between 10.24 and 10.65 hours of computational time (right).

polarized brightness (pB) images. We also show the one- and two-dimensional (1 D and 2 D) timing diagrams of some simu-
lated parameters at 3 Rs . In Subsection 3.3, we demonstrate the timing diagrams of some selected parameters monitored by
some virtual satellites and map the radial velocity and magnetic field observed at 1 AU back to 20 Rs for comparison. We also
illustrate the 2 D timing diagrams of the simulated radial velocity and plasma density at 20 Rs .

3.1. Distributions of the open and closed-magnetic field regions

Coronal holes (CHs) are dark regions observed in extreme ultraviolet (EUV) and soft X-ray channels, typically associated
with low plasma density and magnetic field lines that are open to interplanetary space. CH distributions vary across different
phases of solar activity and are among the most prominent features of the solar corona (Feng, Ma, and Xiang 2015; Feng et al.

2017, 2019; Frazin et al. 2007; Hayes, Vourlidas, and Howard 2001; Linker et al. 1999; Petrie, Canou, and Amari 2011). Gener-
ally, three types of CHs can be identified in EUV and soft X-ray images of the solar corona. Polar CHs are located at the solar
poles and often extend to lower latitudes, occasionally crossing the solar equator. Isolated CHs, commonly observed near
solar maxima, are detached from polar CHs and scattered across low and mid-latitudes. Transient CHs are associated with
solar eruptive events, such as coronal mass ejections, solar flares, and eruptive prominences.

In Fig. 3, we derive the simulated open- and closed-field regions by tracing the magnetic field lines from 2.5 Rs to the solar
surface(middle and bottom) and compare them with the synoptic maps of the observations (top) from the 193 Å channel of
Atmospheric Imaging Assembly (AIA 193 Å) telescope (Lemen et al. 2012) onboard the Solar Dynamics Observatory spaceship
(Pesnell, Thompson, and Chamberlin 2012)4. These images are illustrated in a co-rotating coordinate system. It reveals that
the simulations aptly reproduce the observed southern polar CH with the latitudes 70◦ poleward. The leading CHs around
220◦ and 280◦ in longitude, extending from the southern pole to near the solar equator, as well as the isolated CH centred
at (θlat,φlong) = (40◦N,60◦) and detached from the northern polar CH, are also well captured. Here, “θlat" represents the
heliographic latitude, and “φlong" denotes the Carrington longitude. Additionally, the decreasing trend of scattered isolated
CHs in the low-latitude domain from CR 2110 to 2111 is also captured in the simulation results. Notably, the isolated CH
centered around (θlat,φlong) = (0◦,150◦) rapidly transformed from an upside-down hook shape at 782 hours to a whirlwind-
like structure above the solar equator at 1042 hours. Together with Fig. 1, this rapid change can be attributed primarily to the
emergence of a dipole centered at (θlat,φlong) = (10◦N,160◦).

In Fig. 4, we present the AIA 171 Å EUV observations (top) along with the simulated 171 Å EUV images (middle and bottom)
in a co-rotating coordinate system. The simulated EUV images are derived by integrating along the radial direction from 1.02

4 https://sdo.gsfc.nasa.gov/data/synoptic/

https://sdo.gsfc.nasa.gov/data/synoptic/
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Figure 3. Synoptic maps of the EUV observations from the 193 Å channel of AIA on board SDO (top) for CRs 2110 (left) and 2111 (right),
alongside the distributions of open- and closed-field regions modelled by the time-evolving SIP-IFVM coronal model (middle and bottom),
all shown in a co-rotating coordinate system. In the middle and bottom panels, the white and black patches represent open-field regions
with magnetic field lines pointing outward and inward relative to the Sun, respectively, while the gray patches indicate closed-field regions.

Rs to 1.5 Rs . The emission in each point x of our computational domain is calculated via

Iλ(x) =Gλ(T )n2
e (x),

where the wavelength λ = 171Å and Gλ is the temperature dependent response function for the 171Å waveband, which is
obtained from the CHANTI atomic database (Dere et al. 1997, 2023). Meanwhile, the synoptic AIA 171 Å EUV observation
images are generated by concatenating a series of meridional strips extracted from full-disk images over the duration of an
entire CR (Hamada et al. 2018). The 171 Å EUV images primarily show the solar corona at temperatures of approximately
from 0.8 ∼ 1.0 million K (M K). It is mainly sensitive to emission from Fe IX (iron-9) ions, which are abundant in the quiet
corona and upper transition region, highlighting coronal loops and other magnetic structures in the low corona regions.

Since the lifetime of coronal loops ranges from minutes and hours to weeks, and our model resolution does not resolve
the transition region, the simulation results do not accurately capture the bright structures observed in the AIA 171 Å EUV
images. However, the dark regions, spanning longitudes 250◦ to 360◦ between 50◦S and 75◦N, and 60◦ to 200◦ between 50◦S
and 50◦N, are basically captured. The observed bright structures centered at (θlat,φlong) = (20◦N,40◦) and (20◦S,190◦) for
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CR 2110 are reproduced in the simulation at 262 hours. The observed bright structure centered at (θlat,φlong) = (25◦N,270◦),
accompanied by a dark region on its left side, is captured by the simulation at 522 hours. For CR 2111, the simulation at
782 hours approximately reproduces the observed bright structures centered at (θlat,φlong) = (20◦N,150◦) and (20◦S,250◦).
Additionally, the bright structure centered at (θlat,φlong) = (20◦N,340◦) is well captured at 1042 hours. The extremely bright
structure centered at (θlat,φlong) = (15◦S,170◦) at 1042 hours may be attributed to the transition of the open-field region in
this area around 782 hours to a closed-field configuration at 1042 hours.

emergence of the dipole centered at (θlat,φlong) = (10◦N,160◦), as illustrated in Fig. 1.

Figure 4. Synoptic maps of the EUV observations from the 171 Å channel of AIA on board SDO (top) for CRs 2110 (left) and 2111 (right),
alongside the EUV images derived from the time-evolving simulation results at different moments (middle and bottom).

3.2. Coronal structures near the Sun

White-light polarized brightness (pB) images can reveal various large-scale coronal structures. In these pB images, bright
regions correspond to high-density coronal structures, such as bipolar streamers and pseudo-streamers, while dark regions
indicate low-density structures, such as coronal holes(Feng, Ma, and Xiang 2015; Feng et al. 2017, 2019; Frazin et al. 2007;
Hayes, Vourlidas, and Howard 2001; Linker et al. 1999; Petrie, Canou, and Amari 2011; Feng 2020c). Bipolar streamers sepa-
rate CHs with opposite magnetic polarities, while pseudo-streamers separate CHs of the same polarity. Additionally, bipolar
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streamers extend outward several solar radii from the Sun, forming a cusp-like structure as they are drawn into a current sheet
above the helmet streamer (Abbo et al. 2015; Feng et al. 2017, 2019; Riley et al. 2011; Wang, N. R. Sheeley, and Rich 2007).

In Fig. 5, we compare white-light pB images from the innermost coronagraph of the Sun Earth Connection Coronal
and Heliospheric Investigation (SECCHI) instrument suite (top) onboard the Solar Terrestrial Relations Observatory Ahead
(STEREO-A) spacecraft 5 (Howard et al. 2008; Kaiser et al. 2008; Thompson et al. 2003; Thompson and Reginald 2008) with
those synthesized from the simulation results ranging from 2.5 to 15 Rs (middle). The 2 D distributions of some selected
simulated magnetic field lines on the meridional plane in the STEREO-A view, ranging from 1 to 6 Rs , are also illustrated
(bottom). This comparison indicates that the simulated magnetic field lines and bright structures are generally consistent
with the observed bipolar and pseudo-streamers, although some discrepancies exist in the width and position of these bright
structures. The mismatch may come from the imperfect measurements of photospheric magnetic fields, possibly presence
of the solar disturbances during the two CRs that are not considered in the MHD modeling.

At 442 hours in the time-evolving coronal simulation, both the simulation and observations exhibit two bright structures
centered around 44◦S and 46◦N at the east and west limbs, respectively. The magnetic field lines indicate that these bright
structures are formed by bipolar streamers. However, in the simulation, the observed bright structures centered around 10◦N
and 20◦S at the east and west limbs are shifted northward by approximately 40◦ and 20◦, respectively. At 602 hours, the
three bright structures centered around 22◦S at the east limb and 57◦N and 7◦N at the west limb are well reproduced in the
simulation, formed by bipolar streamers. However, the pseudo streamers located around 34◦S and 61◦N at the west and east
limbs appear 10◦ and 20◦ farther north than in the observations. At 1102 hours, the simulated bipolar streamer around 12◦S
at the west limb successfully captures the observed bright structure, while the simulated bipolar streamer around 22◦S at the
east limb is shifted 20◦ northward compared to observations. Additionally, the pseudo streamers around 48◦N at both limbs
align well with the observed bright structures. At 1262 hours, the simulated bipolar streamer around 20◦S at the east limb
and 6◦N at the west limb effectively reproduce the observed structures. The pseudo streamers around 45◦N and 59◦N at the
west and east limbs also closely match the observations. However, the observed bright structure around 18◦S is not present
in the simulation results, despite the existence of a pseudo streamer in the magnetic field structure.

Additionally, we compare the pB observations at 3Rs with the modeled results in Fig. 6. The top panels illustrate synoptic
maps of the east-limb observations from the Large Angle and Spectrometric Coronagraph C2 (LASCO-C2) (Brueckner et al.

1995) onboard the Solar and Heliospheric Observatory (SOHO) 6 for CRs 2110 (left) and 2111 (right), with the bright structures
representing distributions of the high-density coronal structures. The middle and bottom panels display the 2 D timing
diagrams of simulated plasma number density (105 cm−3) and radial velocity Vr (km s−1). These 2 D timing diagrams are
synthesized from a series of time-evolving simulation results with a cadence of one result per 20 hours, the radial basic
function (RBF) interpolation method (Wang et al. 2022a) is applied to interpolate the variables to the east-limb longitude of
the Sun in the Earth view. The orange solid lines overlaid on these counter denote the magnetic neutral lines (MNLs) modeled
by the time-evolving coronal model.

The comparison in Fig. 6 demonstrates that the bright structures in the simulated plasma density are generally consistent
with those in the observed pB observations. The simulated high-density, low-speed flows are primarily distributed around the
MNLs. Additionally, it is noted that the northernmost bright structures in the simulation for CR 2110 extend approximately
20◦ farther north during the first 320 hours. Meanwhile, for CR 2111, the bright structures during the first 270 hours of the
simulation changed from a trapezoidal cavity to irregular solid triangles in the observations. These mismatches may be
attributed to the fact that the magnetic field at different longitudes in each synoptic magnetographs is observed at different
times, as well as the imperfect measurements of the photospheric magnetic fields in the polar regions.

During the time-evolving coronal simulation, two virtual satellites are placed at 3 Rs and 20 Rs , maintaining the same
latitude as Earth and lagging 60◦ behind in longitude. In Fig. 7, we present the timing diagrams of radial velocity Vr (km s−1,
left), proton number density (105 cm−3, middle), and decadic logarithms of plasma β (right), as monitored by the virtual
satellites positioned at 3 Rs . Fig. 7 demonstrate that the plasma β at 3 Rs around the solar equator usually varies between

5 https://stereo-ssc.nascom.nasa.gov/browse/
6 https://sdo.gsfc.nasa.gov/data/synoptic/

https://stereo-ssc.nascom.nasa.gov/browse/
https://sdo.gsfc.nasa.gov/data/synoptic/
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Figure 5. White-light pB images observed by COR2/STEREO-A (top), ranging from 2.5 to 15 Rs , alongside corresponding pB images syn-
thesised from simulation results ranging from 2.5 to 15 Rs (middle) and 2 D distributions of some selected simulated magnetic field lines
from 1 to 6 Rs (bottom). These images are shown on the meridional plane in the STEREO-A view.

0.3 to 100 during the time-evolving simulation, which is consistent with the values derived in Gary (2001). It is also observed
that a peak

/

trough in plasma density profile generally corresponds to a trough
/

peak in the velocity profile. However, the
peaks in plasma density around 600 and 675 hours are narrower than the corresponding troughs in the velocity profile, while
the plasma density trough around 850 hours is wider than the corresponding velocity peak. These mismatches reveal the
complexity of dynamic mechanisms in the subsonic

/

sub-Alfvénic coronal region, highlighting the requirement of careful
consideration of the transformation between kinetic and magnetic energy in simulations of such regions.

3.3. Timing diagrams of plasma parameters at 20 Rs
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Figure 6. Synoptic maps of east-limb white-light pB images at 3 Rs observed by the LASCO C2 instrument onboard SOHO satellite (top)
for CRs 2110 (left) and 2111 (right), alongside the timing diagrams of simulated plasma number density (105 cm−3) and radial velocity Vr

(km s−1 at 3 Rs at the east-limb longitude of the Sun in the Earth view.

Figure 7. Timing diagram of radial velocity Vr (km s−1, left), proton number density (105 cm−3, middle), and decadic logarithms of plasma
β (right), as observed by a virtual satellite located at 3 Rs , positioned 60◦ behind Earth in longitude and at the same latitude.
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In Fig. 8, we present the radial velocity Vr (km s−1, left top), proton number density (103 cm−3, left bottom), radial magnetic
field polarities (right top), and decadic logarithms of plasma β (right), as monitored by the virtual satellites positioned at 20
Rs (black solid lines). Compared to Fig. 7, the velocity peaks and troughs align more closely with plasma density troughs
and peaks, indicating that the dynamics in this supersonic

/

super-Alfvénic region are significantly simpler than those in the
subsonic

/

sub-Alfvénic coronal region. Additionally, we noticed that the two velocity troughs appearing around 740.5 and
166.5 hours in Fig. 7 shifted to 748.2 and 175.0 hours in Fig. 8, respectively. This indicates that the two troughs propagate
from 3 Rs to 20 Rs with an average velocity of approximately 350 km s−1. By performing a ballistic propagation, we map the
solar wind velocity and radial magnetic field polarities observed by WIND satiate (King and Papitashvili 2005) at 1 AU to 20 Rs

(top, gray solid lines). Considering that some velocity peaks observed at 1 AU appear roughly 100 hours earlier when mapped
to 20 Rs , we position the virtual satellite 60◦ behind Earth to make a comparison with in-situ observations at 1 AU near Earth.

Fig. 8 shows that the simulation captures the observed velocity peak around 73 hours and 750 hours. The simulated velocity
peak, approximately 580 km s−1, occurs at 280 hours in the simulation, while it appears at 410 hours in the observations. Ad-
ditionally, the velocity exceeding 580 km s−1, which persists between 370 and 410 hours in the observations, is missing in the
simulation. The observed velocity peak around 1000 hours appears about 70 hours earlier than in simulation. Additionally,
the simulation approximately captures the observed velocity troughs around 180 hours, 880 hours. The two observed velocity
troughs, centered at 500 and 650 hours, combine into one wide trough in the simulation, while the observed trough centered
at 1100 hours occurs about 150 hours earlier than in the simulation. As for the radial magnetic polarities, the simulation
capture 83.4% of the observations. These discrepancies in velocity and radial magnetic polarities may be attributed to the
limitations of the empirical heating function used to approximate coronal heating and solar wind acceleration, as well as the
constraints of synoptic magnetograms, where the magnetic field at different longitudes is observed at different times. Since
this period occurs during solar maximum, the frequent eruptions, such as coronal mass ejections, which are not included in
this model, may also contribute to the discrepancies between the simulation results and observations.

In Fig. 9, we further present the 2 D timing diagrams of simulated plasma number density (103 cm−3, top), radial velocity
Vr (km s−1, middle) and temperature (105 K, bottom) to show if the code produces the latitude structure of the solar wind,
which is basically the latitude distribution of fast and solar wind. These diagrams are synthesized from a series of time-
evolving simulation results at the same longitude as the virtual satellite, with a cadence of one result every 20 hours. The
orange solid lines overlaid on the contours represent the MNLs. It shows that the MNLs, spanning between 30◦S and 45◦S,
are flatter than those in Fig. 6. The low speed solar wind (Vr < 400 km s−1), associated with high plasma density, is primarily
concentrated around the MNLs. Meanwhile, the fast solar wind (Vr > 550 km s−1), accompanied with low plasma density,
dominate the polar regions south of 50◦S and north of 80◦N. The simulated plasma temperature distributions are positively
correlated with radial solar wind speeds (Elliott et al. 2012; Pinto and Rouillard 2017; Li et al. 2018), with the fast solar wind
exhibiting temperatures ranging from 10 to 14.7 M K, while the slow wind corresponds to temperatures between 3 and 7 M K.
This demonstrates that the simulated temperature range match observations.

4. CONCLUDING REMARKS

In this work, we extent our recently developed SIP-IFVM (Wang et al. 2024) model, an implicit MHD coronal model con-
strained by a time-invariant magnetogram, into a time-evolving coronal model and adjust the adiabatic index γ from 1.05 to
5
3 to better represent the adiabatic process in coronal simulations. Furthermore, we design a magnetic field decomposition
strategy for time-evolving coronal simulations and apply it to the time-evolving SIP-IFVM coronal model. Unlike traditional
decomposition strategies, which split the magnetic field into a time-invariant potential field and a time-dependent compo-
nent B1, failing to maintain B1 small during time-evolving simulations, our approach ensures that B1 remains consistently
small throughout the simulations by introducing a temporally piecewise-constant variable to accommodate part of the non-
potential field. As a result, the occurrence of non-physical negative thermal pressure when deriving thermal pressure from
energy density in low-β regions is effectively mitigated in time-evolving coronal simulations.

The main contribution of this paper is demonstrating that, by employing an implicit algorithm and adopting the novel
extended magnetic field decomposition strategy proposed herein, we can perform 3 D global MHD coronal simulations to
evaluate the long-term evolution of coronal structures in practical applications, achieving a speed more than 80 times faster
than the real time evolution using only 192 CPU cores. By this means, the time-evolving MHD coronal model, driven by a se-
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Figure 8. Timing diagram of radial velocity Vr (km s−1, left top), proton number density (103 cm−3, left bottom), radial magnetic field po-
larities (right top) with “-1" denoting the field pointing to the Sun and “1" for the field directing away from the Sun, and decadic logarithms
of plasma β (right bottom). The black solid lines represent the simulated results observed by a virtual satellites located at 20 Rs , positioned
60◦ behind Earth in longitude and at the same latitude. The gray solid lines denote the velocity and magnetic field polarity derived from
WIND satellite observations, which has been mapped from 1 AU to 20 Rs following the ballistic propagation.

ries of time-evolving magnetograms, can robustly and efficiently resolve low-β issues. Retaining more critical time-evolving
information than commonly used quasi-steady-state coronal models further enables it to capture the dynamic features of
the corona with higher fidelity and more accurately simulate solar disturbances, such as CME propagations.

We employ the thermodynamic time-evolving MHD coronal model, incorporating the extended magnetic field decom-
position strategy, to simulate the evolution of the global corona from the solar surface to 20 Rs during two solar maximum
CRs with in an inertial coordinate system. Completing the 1300-hour evolution of the corona within just 16 hours of com-
putational time validate its efficiency. Given that the maximum magnetic field strength near the solar surface occasionally
exceeds 40 Gauss and the plasma beta reaches a minimum of approximately 10−3, the model demonstrates sufficient numer-
ical stability for most solar-terrestrial simulation requirements. Furthermore, the time-evolving simulation results basically
reproduce remote EUV and pB observations and capture in-situ measurements mapped from 1 AU to 20 Rs , demonstrating
its capability to simulate complex time-evolving coronal structures during solar maximum.
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Figure 9. Timing diagrams of simulated plasma number density (103 cm−3, top), radial velocity Vr (km s−1, middle) and temperature
(105 K, bottom) at 20 Rs , corresponding to the same longitude as in Fig. 8.

Given that the computational time for simulating 1300 hours of physical time is no more than 16 hours using 192 CPU
cores, it is practical to conduct faster-than-real-time CME simulations from the solar surface to 1 AU based on this work.
We will refine the mesh and extend the coronal model to 1 AU, establishing a 3D implicit time-evolving MHD Sun-to-Earth
model chain. Additionally, we will use an observation-based flux rope to trigger a realistic CME event in the time-evolving
solar-terrestrial MHD model, validating this new generation of CME simulations. Furthermore, this model will be used to
enhance and streamline the daily Sun-to-Earth forecasting process and to investigate the dynamic interaction between the
solar wind and the magnetosphere of planets like Jupiter and Saturn.

Although this fully implicit time-evolving MHD solar coronal model, integrated with the extended magnetic field decom-
position strategy, offers significant advantages and is a promising tool for timely and accurate simulation of the time-evolving
corona in practical space weather forecasting, there is still considerable room for further improvement. Synchronized mag-
netograms are needed to address the limitation of current synoptic magnetographs, where magnetic fields at different longi-
tudes are observed at different times. More accurate measurements of the photospheric magnetic fields in the polar regions
are required to reproduce more realistic coronal structures. Additionally, more physically consistent heating source terms
are needed to better mimic coronal heating and solar wind acceleration during time-evolving simulations. Moreover, self-
consistently simulating the formation and evolution of coronal eruptions is crucial for enhancing the reliability of space
weather forecasting using numerical models.
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In our future work, we plan to incorporate surface flux transport models, such as the Advective Flux Transport (AFT) model
(Upton and Hathaway 2014), to advect the radial magnetic field with observed flows and generate a more realistic magnetic
field evolution at the inner boundary of our coronal model. We may also explore the use of artificial intelligence (AI) meth-
ods to enhance the resolution of the magnetic field in the polar regions, which are often poorly resolved in observations.
Some local active region models (e.g. Amari et al. 2018; Jiang et al. 2016; Zhong, Guo, and Ding 2021) will be integrated into
this global MHD coronal model to generate energized fields corresponding to transient eruption events. Additionally, we may
incorporate additional observations into the inner boundary conditions, such as inferring horizontal velocities from observa-
tional data using the time-distance helioseismology method (Yalim, Pogorelov, and Liu 2017; Zhao et al. 2012). Furthermore,
we plan to investigate the wave

/

turbulence-driven (WTD) heating mechanism (Cranmer 2010; Schleich et al. 2023) in our
time-evolving coronal model to gain a better understanding of how both fast and slow solar wind streams are heated and
accelerated.
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APPENDIX

A. DERIVATION OF THE EXTENDED DECOMPOSED MHD EQUATIONS

Considering that (B+ǫ B)2 −B2 ≡ 2 ǫ B2 +ǫ2 B2 with ǫ B denoting the discretization error in the magnetic field B, the
magnetic pressure discretization error can be comparable to thermal pressure in low β (the ratio of the thermal pressure to
the magnetic pressure) regions and non-physical negative thermal pressure are prone to appear when deriving thermal
pressure from energy density. To avoid such undesirable situations, traditional decomposed MHD equations are commonly
used, where the magnetic field B is divided into a time-independent potential field and a time-dependent field B1, with B1

being used in the derivation of the thermal pressure. However, discretization errors in B1 are still likely to result in
non-physical negative thermal pressure as |B1| increases in the time-evolving simulations, potentially causing the code to
break down. Therefore, we propose the extended magnetic field decomposition strategy, in which the magnetic field B is
divided into a time-independent potential field B00, a temporally piecewise constant field B01, and a time-dependent field
B1. In the following we describe how the extended decomposed MHD equations are derived.
With B00 representing a static potential field, and B01 a temporally piecewise constant field that remains unchanged during
the time interval between t n and t n+k , where the subscripts “n" and “n+k " denote the n-th and (n+k)-th time levels in a
simulation, the following conditions are satisfied within the time interval between t n and t n+k :

{

∂B00
∂t = 0, ∇·B00 = 0, ∇×B00 = 0, t ∈ [t n , t n+k ]

∂B01
∂t

= 0, t ∈ (t n , t n+k )
. (A1)
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The original energy equation is described as

∂E

∂t
+∇·

[(

E +pT

)

v−B(v ·B)
]

=−(∇·B) v ·B (A2)

where E = p
γ−1 +

1
2ρv2 + 1

2 B2 and pT = p + B2

2 . Given that B = B00 +B01 +B1 and E1 = p
γ−1 +

1
2ρv2 + 1

2 B2
1. The formulation of E

can be described as

E = E1 +
1

2
B2

0 +B0 ·B1 (A3)

where B0 = B00 +B01.
The original induction equation is described as

∂B

∂t
+∇· (v B−Bv) =−(∇·B) v (A4)

From Eq. (A1) and Eq. (A3) we get
∂E

∂t
=

∂E1

∂t
+B0 ·

∂B0

∂t
+B0 ·

∂B1

∂t
+B1 ·

∂B0

∂t
(A5)

∂B

∂t
=

∂(B1 +B01)

∂t
(A6)

From Eq. (A6) and Eq. (A4) we get
∂B1

∂t
=−∇· (v B−Bv)−v∇·B−

∂B01

∂t
(A7)

Multiplying both the left-hand side and the right-hand side of Eq. (A7) by B0 results in

B0 ·
∂B1

∂t
=−∇· (v B−Bv) ·B0 −v ·B0∇·B−B0 ·

∂B01

∂t
(A8)

Considering that

∇· (v B) ·B0 = (∇·v)B ·B0 + (v ·∇)B ·B0 =∇· [v (B ·B0)]− (v ·∇)B0 ·B

∇· (Bv) ·B0 = (∇·B) v ·B0 + (B ·∇)v ·B0 =∇· [B (v ·B0)]− (B ·∇) B0 ·v

Eq. (A8) is equivalent to

B0 ·
∂B1

∂t
=−∇· [(B ·B0) v− (v ·B0) B]−v ·B0∇·B−B0 ·

∂B01

∂t
+η (A9)

where η= (v ·∇)B0 ·B− (B ·∇)B0 ·v.
From Eq. (A9) and Eq. (A5) we get

∂E

∂t
=

∂E1

∂t
−∇· [(B ·B0) v− (v ·B0) B]−v ·B0∇·B−B0 ·

∂B01

∂t
+B0 ·

∂B0

∂t
+B1 ·

∂B0

∂t
+η (A10)

From Eq. (A2) and Eq. (A3) we get

∂E

∂t
=−∇·

[(

E1 +p +B2
0 +2B0 ·B1 +

1

2
B2

1

)

v− (v ·B)B

]

−v ·B∇·B (A11)

From Eq. (A11) and Eq. (A10) we get

∂E1

∂t
+∇·

[(

E1 +p +B0 ·B1 +
1

2
B2

1

)

v− (v ·B1)B

]

=−v ·B1 ∇·B+B0 ·
∂B01

∂t
−

(

B0 ·
∂B0

∂t
+B1 ·

∂B0

∂t

)

−η

(A12)
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Since ∇·B00 = 0, we obtain the following decomposed energy equation:

∂E1

∂t
+∇·

[(

E1 +pT 1 +B1 ·B0
)

v−B(v ·B1)
]

=

−v ·B1∇· (B1 +B01)+B0 ·
∂B01

∂t
−

(

B0 ·
∂B0

∂t
+B1 ·

∂B0

∂t

)

−η

(A13)

where pT 1 = p + B2
1

2 . This indicates that the thermal pressure, p, can be determined from E1. As a result, the accuracy of p is
no longer limited by the discretization error of B but rather by that of B1. As long as B1 remains small, the discretization
error in 1

2 B2
1 is unlikely to approach the magnitude of the thermal pressure, reducing the risk of non-physical negative

thermal pressure.
The original momentum equation is described as

∂
(

ρv
)

∂t
+∇·

[

ρv v+
(

p +
B2

2

)

I−BB

]

=−(∇·B) B (A14)

Given that ∇×B00 ×B00 =∇·
(

− 1
2 B2

00I+B00 B00
)

− (∇·B00)B00 and ∇·B00 = 0, Eq. (A14) is equivalent to

∂(ρv)

∂t
+∇·

[

ρv v+
(

p +
B2

2
−

B2
00

2

)

I−BB+B00 B00

]

=−∇· (B1 +B01)B (A15)

Consequently, we get the following extended decomposed MHD equations:







































∂ρ
∂t

+∇· (ρv) = 0
∂(ρv)
∂t

+∇·
[

ρv v+
(

p + B2

2 − B2
00
2

)

I−BB+B00 B00

]

=−∇· (B1 +B01)B

∂E1
∂t +∇·

[(

E1 +pT 1 +B1 ·B0
)

v−B(v ·B1)
]

=−∇· (B1 +B01) (v ·B1)

+B0 · ∂B01
∂t

−
(

B0 · ∂B0
∂t

+B1 · ∂B0
∂t

)

− (v ·∇)B0 ·B+ (B ·∇)B0 ·v

∂B1
∂t +∇· (v B−Bv) =−∇· (B1 +B01)v− ∂B01

∂t

(A16)

Suppose B01 is increased by B1 over a very short period when B1 becomes significantly large at time t n , such as when p

0.5B2
1

drops below a specific threshold. In this case, the terms ∇· (v B−Bv) and −∇· (B1) become negligible in Eq. (A7) and
∂B1
∂t =− ∂B01

∂t holds. Consequently, B1 decreases to 0 over this very short period, B0 · ∂B01
∂t −

(

B0 · ∂B0
∂t +B1 · ∂B0

∂t

)

is equivalent to

B1 · ∂B1
∂t , and Eq. (A13) reduces to ∂E1

∂t = ∂
( 1

2 B2
1

)

∂t . At the end of this infinitely short period, B01, B1 and E1 become B01 +B1, 0,
and

p
γ−1 +

1
2ρv2, respectively.

Therefore, when p

0.5B2
1

drops below a threshold at time t n , we update B01 to B01 +B1, set B1 = 0, and assign E1 = p
γ−1 +

1
2ρv2.

Subsequently, we solve Eq. (A16) with ∂B01
∂t = 0 to advance the solutions in time. This process continues until

p

0.5B2
1

once

again drops below the threshold, at which moment we repeat the procedure outlined above.
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